Состав, строение и происхождение вселенной. Строение Вселенной. Теории. Интересные факты

Вселенная – это всё, что можно обнаружить на самых далёких расстояниях любыми средствами, включая различные технические устройства. А поскольку техника, движимая нашими потребностями и научным прогрессом, развивается, то меняется и наше представление о Вселенной.

До начала ХIХ столетия источником знания о Вселенной являлись наблюдения за сравнительно небольшой частью нашей галактики в виде ближайших к нам звёздных скоплений. Эта часть и принималась за всю Вселенную. Причём считалось, что Вселенная – это раз и навсегда данное, застывшее образование, подчиняющееся в основном законам механики и существующее вечно. Дальнейшее развитие науки и появление новых мощных средств наблюдения показало, что даже вся наша галактика – это лишь одно из звёздных скоплений, которых во Вселенной существуют миллиарды и кроме сил гравитации и инерции в них действуют и другие силы, относящиеся к электромагнитным, сильным и слабым взаимодействиям.

Применение появившейся в начале ХIХ в. теории относительности А. Эйнштейна позволило российскому учёному Александру Александровичу Фридману (1888-1925) теоретически предсказать возможность нестационарного состояния Вселенной. Его расчёты показывали, что Вселенная может расширяться или сжиматься в зависимости от величины её полной массы. Несколько позднее наблюдения американского астронома Эдвина Паула Хаббла (1889-1953) показали, что при переходе к более далёким звёздам длина излучаемых ими электромагнитных волн закономерно увеличивается. Поскольку из видимых электромагнитных волн наибольшей длиной обладают волны, соответствующие красному свету, обнаруженное явление получило название красного смещения . Оно, в соответствии с законами физики, означало, что далёкие галактики удаляются от наблюдателя, и чем дальше, тем быстрее.

Данный факт привёл к созданию гипотезы происхождения Вселенной, в результате Большого взрыва . По этой гипотезе считается, что примерно 15-20 млрд лет назад вся материя была сконцентрирована в небольшом объёме. Данный возраст Вселенной определён на основании оценки расстояния до самых далёких галактик (миллиарды световых лет) и скорости их разбегания, которая сравнима со скоростью света. Объём и форму состояния материи до Большого взрыва при современном знании оценить невозможно. Хотя в литературе встречаются разные предположения об объёмах порядка километров или даже размеров атомов. Такие рассуждения, вероятно, мало полезны, поскольку напоминают рассуждениям средневековых схоластов, которые на своих заседаниях бывало по нескольку дней без отдыха, в жарких спорах, с очень серьёзными выражениями на лицах обсуждали такой, например, весьма важный, по их мнению, вопрос: «Сколько чертей может уместиться на острие иглы?»

Для науки вопросы, которые нельзя проверить экспериментально, не имеют смысла. Мы не можем воспроизвести в лаборатории и даже теоретически оценить гравитацию, температуру, давление и прочие условия при концентрации в небольшом объёме таких масс, как вся Вселенная. Неизвестно, как проявляются и существуют ли вообще в этом состоянии силы, обусловливающие гравитационные, электромагнитные, сильные и слабые взаимодействия.

Нужно также принимать во внимание трудности оценки пространственных отношений в данных условиях. В соответствии с теорией относительности в сильных гравитационных полях и при протекании процессов со световыми скоростями искривлённое и сжатое пространство совсем не соответствует тому, что обычно существует в нашем воображении. Например, нельзя говорить о месте, из которого начался разлёт. Нельзя считать, что есть неподвижный центр, от которого остальные галактики удаляются. Это можно показать на модели двумерного пространства в виде раздуваемого шара, на поверхности которого нанесены точки. Эти точки будут одинаково удаляться друг от друга, и невозможно указать, какая из них является центром разбегания. В этой модели рассматриваемое пространство двумерно, центр разбегания находится в третьем измерении. Отличием реальной расширяющейся Вселенной от двумерной модели является то, что она трёхмерна и устройство нашего сознания не позволяет представить центр разбегания в четвёртом измерении. Единственная возможность решения этой проблемы – формулирование её в виде математических формул.

Здесь уместно вспомнить о том, как сам А. Эйнштейн определил суть своей теории, когда его попросили сделать это предельно кратко. По словам Эйнштейна, если раньше, до теории относительности считалось, что после исчезновения материи остаётся пустое пространство, то теперь исчезновение материи означает, что исчезает и пространство.

Помимо наблюдаемого разбегания галактик есть и ещё один существенный факт, который можно трактовать как свидетельство в пользу гипотезы Большого взрыва. Это так называемое реликтовое излучение . Теоретически оно было предсказано в 1953 г. американским учёным Георгием Антоновичем Гамовым (1904-1968). Его расчёты показывали, что в результате интенсивных взаимодействий на начальных этапах разлёта должно было возникнуть сильное электромагнитное излучение, следы которого могут присутствовать и по сей день. Излучение действительно было обнаружено в 1965 г. американскими учёными Арно Аланом Пензиасом (р.1933) и Робертом Вудроу Уилсоном (р.1936), удостоенными за это открытие Нобелевской премии. Настраивая новый радиотелескоп, эти учёные никак не могли избавиться от мешающего фонового излучения. Дальнейший анализ характера этого излучения показал, что оно постоянно во времени и одинаково по интенсивности во всех направлениях и в разных точках космического пространства, как и предсказывала гипотеза Гамова. Излучение относится к микроволновому радиодиапазону с длиной волны 7,35 см.

Исходное состояние Вселенной, с которого начался разлёт материи и формирование её современных форм, называется сингулярным . С некоторой определённостью можно сказать, что в этом состоянии не могут существовать такие формы материи, как фотоны, элементарные частицы и атомы, которые составляют основу современной Вселенной.

В настоящее время совместными усилиями многих стран построены дорогостоящие экспериментальные установки, на которых учёные надеются воссоздать некоторые виды высокоэнергетических взаимодействий, подобных взаимодействиям частиц материи во время Большого взрыва.

Состояние в начальные моменты разбегания из-за высоких скоростей и интенсивных взаимодействий материи принято называть горячей Вселенной . В результате взрыва, природа которого пока остаётся загадкой, вступили в действие уже известные нам законы квантовой механики, отвечающие за образование фотонов, элементарных частиц и атомов, начали действовать и законы классической ньютоновой механики.

Самыми простыми по строению являются атомы водорода. Они же в соответствии с законами квантовой механики являются и наиболее устойчивыми. Поэтому атомы водорода образовывались с наибольшими скоростями и составляли на начальных стадиях основную массу Вселенной. В настоящее время их доля определяется величиной около 90 % общего количества атомов.

В условиях горячей Вселенной при движении с громадными скоростями столкновения атомов водорода приводили к разрушению электронных оболочек и объединению ядер. В результате процесса, состоящего из нескольких этапов, четыре протона, из которых два превращаются в нейтроны, образуют ядро гелия – второго элемента таблицы Менделеева. Этот элемент также является очень устойчивым, но уступает по устойчивости водороду и для своего образования требует более сложных процедур. Его доля в современной Вселенной составляет приблизительно 10 %.

Подобным образом могут синтезироваться и атомы остальных элементов, но они гораздо менее устойчивы и эта устойчивость падает с увеличением порядкового номера и массы атома. Время жизни атомов некоторых тяжёлых элементов измеряется долями секунды. Соответственно их встречаемость во Вселенной находится в обратной зависимости от атомарной массы. Суммарная доля всех элементов, без водорода и гелия, не превышает 1 %.

Как и при любом взрывном процессе, представляющем собой сложную совокупность мощных разрывающих импульсов, разлетающееся вещество Вселенной (преимущественно водород) распределялось очень неравномерно. Возникали скопления совершенно разного характера - от отдельных молекул, пылинок, газовых туманностей и пылевых облаков до мелких тел и относительно крупных концентрированных скоплений масс. Крупные скопления, подчиняясь законам гравитации, начинали сжиматься. Конечный результат сжатия определялся величиной сжимающейся массы.

Если масса превышала некоторую критическую величину, например, чуть больше массы самой большой планеты нашей Солнечной системы Юпитера (п.4.5), то гравитационная энергия сжатия, превращаясь в тепло, разогревала космическое тело до млн. градусов. При такой температуре начинаются термоядерные процессы синтеза гелия из водорода, зажигается звезда.

Если же сжимаемая гравитацией масса не очень велика, то разогрев достигает тысяч градусов. Этого не достаточно для начала ядерных реакций и образуется раскалённое, постепенно остывающее тело, обычно спутник звезды (планета) или спутник крупной планеты. У более мелких масс разогрев происходит только в центральной части, они остывают быстрее и также становятся планетами или спутниками планет.

И, наконец, совсем мелкие тела не разогреваются. Малая масса не позволяет им эффективно удерживать летучие водород и гелий, которые рассеиваются за счёт диффузии в космическом пространстве. Этому, в частности, способствует и «выдувание» лёгких молекул «звёздным ветром» (поток быстро летящих элементарных частиц). Поэтому в составе не очень массивных тел преобладают тяжёлые элементы (например, кремний или железо) или простые соединения, например, вода в виде льда. Эти тела, в зависимости от размеров и конкретных условий, становятся кометами, астероидами, мелкими спутниками, образуют кольца обломочного материала вокруг планет или носятся в просторах космоса в виде метеоритов, пока не столкнутся с другими телами или не будут захвачены их гравитацией.

По поводу дальнейшей судьбы расширяющейся Вселенной пока нельзя дать окончательного ответа, поскольку не известна точная масса и средняя плотность материи. Расчёты показывают, что в зависимости от принимаемой величины массы можно ожидать как бесконечное разбегание галактик, так и постепенное замедление расширения под действием гравитации с последующим переходом к сжатию. Второй вариант позволяет выдвинуть гипотезу, в соответствии с которой в масштабе сотен миллиардов лет Вселенную можно рассматривать как пульсирующую систему, периодически возвращающуюся в сингулярные состояния, с последующими взрывами и расширениями.

Строение Космоса

Структура Космоса семерична сверху донизу. Семь космических уровней проявления мы будем называть космическими планами, мирами или сводами.

Названия семи космических миров следующие:

1) мир Божественный;
2) мир Монадический;
3) мир Атмический (нирваны);
4) мир Блаженства (буддхический);
5) мир Мысли (ментальный, огненный);
6) мир Желаний (астральный, тонкий);
7) мир Плотный (физический) - наш мир, в котором мы сейчас себя осознаем.

Три первых мира (Божественный, Монадический и Атмический) образуют непроявленную, или небесную Вселенную.

Четыре последних Мира (Блаженства, Мысли, Желаний и Плотный) образуют проявленную, или поднебесную Вселенную.

1. Мир Божественный соответствует Сварогу и космическому началу Явь.
2. Мир Монадический соответствует Ладе и космическому началу Навь.
3. Мир Атмический соответствует Перуну и космическому началу Правь.
4. Мир Блаженства соответствует Семарглу и стихии Огонь.
5. Мир Мысли соответствует Стрибогу и стихии Воздух.
6. Мир Желаний соответствует Сиде и стихии Вода.
7. Мир Плотный соответствует Велесу и стихии Земля.

СТРОЕНИЕ ВСЕЛЕННОЙ
Мир Божественный Сварог Небесная (непроявленная) вселенная
Мир Монадический Лада
Мир Атмический Перун
Мир Блаженства Семаргл Поднебесная (проявленная) вселенная
Мир Мысли Стрибог
Мир Желаний Сида
Мир Плотный Велес

Каждый космический план (мир) состоит из семи подпланов (каждый свод Вселенной состоит из семи малых сводов). Каждый подплан (малый свод) имеет связь с одним из семи космических принципов, причем связь эта точно такая же, как и в случае космических планов:

1 - самый верхний подплан любого космического мира связан с началом Явь;
2 - связан с началом Навь;
3 - связан с началом Правь;
4 - связан со стихией Огонь;
5 - связан со стихией Воздух;
6 - связан со стихией Вода;
7 - связан со стихией Земля.

Таким образом, общее количество подпланов на всех мирах будет 49 (7х7). Четыре низших подплана в любом мире всегда более материальны, более плотны (они связаны с принципом стихий). Три высших подплана всегда более духовны и утонченны. Четвертый подплан, соответствующий стихии Огонь, в любом мире является срединным подпланом, он трансформирует высшие влияния в низшие и наоборот.

В результате преступно невежественной или злонамеренной деятельности людей четыре нижних подплана четырех нижних миров в большей степени загрязнены. Это относится прежде всего к миру Плотному (нарушение экологического равновесия, загрязнение окружающей среды), миру Желаний, миру Мысли и в меньшей степени - к миру Блаженства, так как мир Блаженства связан со стихией Огонь, которая гораздо меньше подвержена загрязнению, нежели другие стихии.

  • 20. Радиосвязь между цивилизациями, находящимися на различных планетных системах
  • 21. Возможность осуществления межзвездной связи оптическими методами
  • 22. Связь с инопланетными цивилизациями с помощью автоматических зондов
  • 23. Теоретико-вероятностный анализ межзвездной радиосвязи. Характер сигналов
  • 24. О возможности прямых контактов между инопланетными цивилизациями
  • 25. Замечания о темпах и характере технологического развития человечества
  • II. Возможна ли связь с разумными существами других планет?
  • Часть первая АСТРОНОМИЧЕСКИЙ АСПЕКТ ПРОБЛЕМЫ

    1. Масштабы Вселенной и ее строение Если бы астрономы-профессионалы постоянно и ощутимо представляли себе чудовищную величину космических расстояний и интервалов времени эволюции небесных светил, вряд ли они могли успешно развивать науку, которой посвятили свою жизнь. Привычные нам с детства пространственно-временные масштабы настолько ничтожны по сравнению с космическими, что когда это доходит до сознания, то буквально захватывает дух. Занимаясь какой-нибудь проблемой космоса, астроном либо решает некую математическую задачу (это чаще всего делают специалисты по небесной механике и астрофизики-теоретики), либо занимается усовершенствованием приборов и методов наблюдений, либо же строит в своем воображении, сознательно или бессознательно, некоторую небольшую модель исследуемой космической системы. При этом основное значение имеет правильное понимание относительных размеров изучаемой системы (например, отношение размеров деталей данной космической системы, отношение размеров этой системы и других, похожих или непохожих на нее, и т. д.) и интервалов времени (например, отношение скорости протекания данного процесса к скорости протекания какого-либо другого). Автор этой книги довольно много занимался, например, солнечной короной и Галактикой. И всегда они представлялись ему неправильной формы сфероидальными телами примерно одинаковых размеров - что-нибудь около 10 см... Почему 10 см? Этот образ возник подсознательно, просто потому, что слишком часто, раздумывая над тем или иным вопросом солнечной или галактической физики, автор чертил в обыкновенной тетради (в клеточку) очертания предметов своих размышлений. Чертил, стараясь придерживаться масштабов явлений. По одному очень любопытному вопросу, например, можно было провести интересную аналогию между солнечной короной и Галактикой (вернее, так называемой "галактической короной"). Конечно, автор этой книги очень хорошо, так сказать, "умом" знал, что размеры галактической короны в сотни миллиардов раз больше, чем размеры солнечной. Но он спокойно забывал об этом. А если в ряде случаев большие размеры галактической короны приобретали некоторое принципиальное значение (бывало и так), это учитывалось формально-математически. И все равно зрительно обе "короны" представлялись одинаково маленькими... Если бы автор в процессе этой работы предавался философским размышлениям о чудовищности размеров Галактики, о невообразимой разреженности газа, из которого состоит галактическая корона, о ничтожности нашей малютки-планеты и собственного бытия и о прочих других не менее правильных предметах, работа над проблемами солнечной и галактической корон прекратилась бы автоматически... Пусть простит мне читатель это "лирическое отступление". Я не сомневаюсь, что и у других астрономов возникали такие же мысли, когда они работали над своими проблемами. Мне кажется, что иногда полезно поближе познакомиться с "кухней" научной работы... Если мы хотим на страницах этой книги обсуждать волнующие вопросы о возможности разумной жизни во Вселенной, то, прежде всего, нужно будет составить правильное представление о ее пространственно-временных масштабах. Еще сравнительно недавно земной шар представлялся человеку огромным. Свыше трех лет потребовалось отважным сподвижникам Магеллана, чтобы 465 лет тому назад ценой неимоверных лишений совершить первое кругосветное путешествие. Немногим более 100 лет прошло с того времени, когда находчивый герой фантастического романа Жюля Верна совершил, пользуясь последними достижениями техники того времени, путешествие вокруг света за 80 суток. И прошло всего лишь 26 лет с тех памятных для всего человечества дней, когда первый советский космонавт Гагарин облетел на легендарном космическом корабле "Восток" земной шар за 89 мин. И мысли людей невольно обратились к огромным пространствам космоса, в которых затерялась небольшая планета Земля... Наша Земля - одна из планет Солнечной системы. По сравнению с другими планетами она расположена довольно близко к Солнцу, хотя и не является самой близкой. Среднее расстояние от Солнца до Плутона - самой далекой планеты Солнечной системы - в 40 раз больше среднего расстояния от Земли до Солнца. В настоящее время неизвестно, имеются ли в Солнечной системе планеты, еще более удаленные от Солнца, чем Плутон. Можно только утверждать, что если такие планеты и есть, они сравнительно невелики. Условно размеры Солнечной системы можно принять равными 50-100 астрономическим единицам * , или около 10 млрд км. По нашим земным масштабам это очень большая величина, примерно в 1 миллион превосходящая диаметр Земли.

    Рис. 1. Планеты Солнечной системы

    Мы можем более наглядно представить относительные масштабы Солнечной системы следующим образом. Пусть Солнце изображается биллиардным шаром диаметром 7 см. Тогда ближайшая к Солнцу планета - Меркурий находится от него в этом масштабе на расстоянии 280 см. Земля - на расстоянии 760 см, гигант - планета Юпитер удалена на расстояние около 40 м, а самая дальняя планета - во многих отношениях пока еще загадочный Плутон - на расстояние около 300м. Размеры земного шара в этом масштабе несколько больше 0,5 мм, лунный диаметр - немногим больше 0,1 мм, а орбита Луны имеет диаметр около 3 см. Даже самая близкая к нам звезда - Проксима Центавра удалена от нас на такое большое расстояние, что по сравнению с ним межпланетные расстояния в пределах Солнечной системы кажутся сущими пустяками. Читатели, конечно, знают, что для измерения межзвездных расстояний такой единицей длины, как километр, никогда не пользуются **). Эта единица измерений (так же как сантиметр, дюйм и пр.) возникла из потребностей практической деятельности человечества на Земле. Она совершенно непригодна для оценки космических расстояний, слишком больших по сравнению с километром. В популярной литературе, а иногда и в научной, для оценки межзвездных и межгалактических расстояний как единицу измерения употребляют "световой год". Это такое расстояние, которое свет, двигаясь со скоростью 300 тыс. км/с, проходит за год. Легко убедиться, что световой год равен 9,46x10 12 км, или около 10000 млрд км. В научной литературе для измерения межзвездных и межгалактических расстояний обычно применяется особая единица, получившая название "парсек";

    1 парсек (пк) равен 3,26 светового года. Парсек определяется как такое расстояние, с которого радиус земной орбиты виден под углом в 1 сек. дуги. Это очень маленький угол. Достаточно сказать, что под таким углом монета в одну копейку видна с расстояния в 3 км.

    Рис. 2. Шаровое скопление 47 Тукана

    Ни одна из звезд - ближайших соседок Солнечной системы - не находится к нам ближе, чем на 1 пк. Например, упомянутая Проксима Центавра удалена от нас на расстояние около 1,3 пк. В том масштабе, в котором мы изобразили Солнечную систему, это соответствует 2 тыс. км. Все это хорошо иллюстрирует большую изолированность нашей Солнечной системы от окружающих звездных систем, некоторые из этих систем, возможно, имеют с ней много сходства. Но окружающие Солнце звезды и само Солнце составляют лишь ничтожно малую часть гигантского коллектива звезд и туманностей, который называется "Галактикой". Это скопление звезд мы видим в ясные безлунные ночи как пересекающую небо полосу Млечного Пути. Галактика имеет довольно сложную структуру. В первом, самом грубом приближении мы можем считать, что звезды и туманности, из которых она состоит, заполняют объем, имеющий форму сильно сжатого эллипсоида вращения. Часто в популярной литературе форму Галактики сравнивают с двояковыпуклой линзой. На самом деле все обстоит значительно сложнее, и нарисованная картина является слишком грубой. В действительности оказывается, что разные типы звезд совершенно по-разному концентрируются к центру Галактики и к ее "экваториальной плоскости". Например, газовые туманности, а также очень горячие массивные звезды сильно концентрируются к экваториальной плоскости Галактики (на небе этой плоскости соответствует большой круг, проходящий через центральные части Млечного Пути). Вместе с тем они не обнаруживают значительной концентрации к галактическому центру. С другой стороны, некоторые типы звезд и звездных скоплений (так называемые "шаровые скопления", рис. 2) почти никакой концентрации к экваториальной плоскости Галактики не обнаруживают, но зато характеризуются огромной концентрацией по направлению к ее центру. Между этими двумя крайними типами пространственного распределения (которое астрономы называют "плоское" и "сферическое") находятся все промежуточные случаи. Все же оказывается, что основная часть звезд в Галактике находится в гигантском диске, диаметр которого около 100 тыс. световых лет, а толщина около 1500 световых лет. В этом диске насчитывается несколько больше 150 млрд звезд самых различных типов. Наше Солнце - одна из этих звезд, находящаяся на периферии Галактики вблизи от ее экваториальной плоскости (точнее, "всего лишь" на расстоянии около 30 световых лет - величина достаточно малая по сравнению с толщиной звездного диска). Расстояние от Солнца до ядра Галактики (или ее центра) составляет около 30 тыс. световых лет. Звездная плотность в Галактике весьма неравномерна. Выше всего она в области галактического ядра, где, по последним данным, достигает 2 тыс. звезд на кубический парсек, что почти в 20 тыс. раз больше средней звездной плотности в окрестностях Солнца *** . Кроме того, звезды имеют тенденцию образовывать отдельные группы или скопления. Хорошим примером такого скопления являются Плеяды, которые видны на нашем зимнем небе (рис. 3). В Галактике имеются и структурные детали гораздо больших масштабов. Исследованиями последних лет доказано, что туманности, а также горячие массивные звезды распределены вдоль ветвей спирали. Особенно хорошо спиральная структура видна у других звездных систем - галактик (с маленькой буквы, в отличие от нашей звездной системы - Галактики). Одна из таких галактик изображена на рис. 4. Установить спиральную структуру Галактики, в которой мы сами находимся, оказалось в высшей степени трудно.


    Рис. 3. Фотография звездного скопления Плеяд


    Рис. 4. Спиральная галактика NGC 5364

    Звезды и туманности в пределах Галактики движутся довольно сложным образом. Прежде всего, они участвуют во вращении Галактики вокруг оси, перпендикулярной к ее экваториальной плоскости. Это вращение не такое, как у твердого тела: различные участки Галактики имеют различные периоды вращения. Так, Солнце и окружающие его в огромной области размерами в несколько сотен световых лет звезды совершают полный оборот за время около 200 млн лет. Так как Солнце вместе с семьей планет существует, по-видимому, около 5 млрд лет, то за время своей эволюции (от рождения из газовой туманности до нынешнего состояния) оно совершило примерно 25 оборотов вокруг оси вращения Галактики. Мы можем сказать, что возраст Солнца - всего лишь 25 "галактических лет", скажем прямо - возраст цветущий... Скорость движения Солнца и соседних с ним звезд по их почти круговым галактическим орбитам достигает 250 км/с **** . На это регулярное движение вокруг галактического ядра накладываются хаотические, беспорядочные движения звезд. Скорости таких движений значительно меньше - порядка 10-50 км/с, причем у объектов разных типов они различны. Меньше всего скорости у горячих массивных звезд (6-8 км/с), у звезд солнечного типа они около 20 км/с. Чем меньше эти скорости, тем более "плоским" является распределение данного типа звезд. В том масштабе, которым мы пользовались для наглядного представления Солнечной системы, размеры Галактики будут составлять 60 млн км - величина, уже довольно близкая к расстоянию от Земли до Солнца. Отсюда ясно, что по мере проникновения во все более удаленные области Вселенной этот масштаб уже не годится, так как теряет наглядность. Поэтому мы примем другой масштаб. Мысленно уменьшим земную орбиту до размеров самой внутренней орбиты атома водорода в классической модели Бора. Напомним, что радиус этой орбиты равен 0,53x10 -8 см. Тогда ближайшая звезда будет находиться на расстоянии приблизительно 0,014 мм, центр Галактики - на расстоянии около 10 см, а размеры нашей звездной системы будут около 35 см. Диаметр Солнца будет иметь микроскопические размеры: 0,0046 А (ангстрем-единица длины, равная 10 -8 см).

    Мы уже подчеркивали, что звезды удалены друг от друга на огромные расстояния, и тем самым практически изолированы. В частности, это означает, что звезды почти никогда не сталкиваются друг с другом, хотя движение каждой из них определяется полем силы тяготения, создаваемым всеми звездами в Галактике. Если мы будем рассматривать Галактику как некоторую область, наполненную газом, причем роль газовых молекул и атомов играют звезды, то мы должны считать этот газ крайне разреженным. В окрестностях Солнца среднее расстояние между звездами примерно в 10 млн раз больше, чем средний диаметр звезд. Между тем при нормальных условиях в обычном воздухе среднее расстояние между молекулами всего лишь в несколько десятков раз больше размеров последних. Чтобы достигнуть такой же степени относительного разрежения, плотность воздуха следовало бы уменьшить по крайней мере в 1018 раз! Заметим, однако, что в центральной области Галактики, где звездная плотность относительно высока, столкновения между звездами время от времени будут происходить. Здесь следует ожидать приблизительно одно столкновение каждый миллион лет, в то время как в "нормальных" областях Галактики за всю историю эволюции нашей звездной системы, насчитывающую, по крайней мере, 10 млрд лет, столкновений между звездами практически не было (см. гл. 9).

    Мы кратко обрисовали масштаб и самую общую структуру той звездной системы, к которой принадлежит наше Солнце. При этом совершенно не рассматривались те методы, при помощи которых в течение многих лет несколько поколений астрономов шаг за шагом воссоздавали величественную картину строения Галактики. Этой важной проблеме посвящены другие книги, к которым мы отсылаем интересующихся читателей (например, Б.А.Воронцов-Вельяминов "Очерки о Вселенной", Ю.Н. Ефремов "В глубины Вселенной"). Наша задача - дать только самую общую картину строения и развития отдельных объектов Вселенной. Такая картина совершенно необходима для понимания этой книги.

    Рис. 5. Туманность Андромеды со спутниками

    Уже несколько десятилетий астрономы настойчиво, изучают другие звездные системы, в той или иной степени сходные с нашей. Эта область исследований получила название "внегалактической астрономии". Она сейчас играет едва ли не ведущую роль в астрономии. В течение последних трех десятилетий внегалактическая астрономия добилась поразительных успехов. Понемногу стали вырисовываться грандиозные контуры Метагалактики, в состав которой наша звездная система входит как малая частица. Мы еще далеко не все знаем о Метагалактике. Огромная удаленность объектов создает совершенно специфические трудности, которые разрешаются путем применения самых мощных средств наблюдения в сочетании с глубокими теоретическими исследованиями. Все же общая структура Метагалактики в последние годы в основном стала ясной. Мы можем определить Метагалактику как совокупность звездных систем - галактик, движущихся в огромных пространствах наблюдаемой нами части Вселенной. Ближайшие к нашей звездной системе галактики - знаменитые Магеллановы Облака, хорошо видные на небе южного полушария как два больших пятна примерно такой же поверхностной яркости, как и Млечный Путь. Расстояние до Магеллановых Облаков "всего лишь" около 200 тыс. световых лет, что вполне сравнимо с общей протяженностью нашей Галактики. Другая "близкая" к нам галактика - это туманность в созвездии Андромеды. Она видна невооруженным глазом как слабое световое пятнышко 5-й звездной величины ***** . На самом деле это огромный звездный мир, по количеству звезд и полной массе раза в три превышающей нашу Галактику, которая в свою очередь является гигантом среди галактик. Расстояние до туманности Андромеды, или, как ее называют астрономы, М 31 (это означает, что в известном каталоге туманностей Мессье она занесена под № 31), около 1800 тыс. световых лет, что примерно в 20 раз превышает размеры Галактики. Туманность М 31 имеет явно выраженную спиральную структуру и по многим своим характеристикам весьма напоминает нашу Галактику. Рядом с ней находятся ее небольшие спутники эллипсоидальной формы (рис. 5). На рис. 6 приведены фотографии нескольких сравнительно близких к нам галактик. Обращает на себя внимание большое разнообразие их форм. Наряду со спиральными системами (такие галактики обозначаются символами Sа, Sb и Sс в зависимости от характера развития спиральной структуры; при наличии проходящей через ядро "перемычки" (рис. 6а) после буквы S ставится буква В) встречаются сфероидальные и эллипсоидальные, лишенные всяких следов спиральной структуры, а также "неправильные" галактики, хорошим примером которых могут служить Магеллановы Облака. В большие телескопы наблюдается огромное количество галактик. Если галактик ярче видимой 12-й величины насчитывается около 250, то ярче 16-й - уже около 50 тыс. Самые слабые объекты, которые на пределе может сфотографировать телескоп-рефлектор с диаметром зеркала 5 м, имеют 24,5-ю величину. Оказывается, что среди миллиардов таких слабейших объектов большинство составляют галактики. Многие из них удалены от нас на расстояния, которые свет проходит за миллиарды лет. Это означает, что свет, вызвавший почернение пластинки, был излучен такой удаленной галактикой еще задолго до архейского периода геологической истории Земли!.


    Рис. 6а. Галактика типа "пересеченной спирали"


    Рис. 6б. Галактика NGC 4594

    Рис. 6с. Галактики Магеллановы облака

    Иногда среди галактик попадаются удивительные объекты, например "радиогалактики". Это такие звездные системы, которые излучают огромное количество энергии в радиодиапазоне. У некоторых радиогалактик поток радиоизлучения в несколько раз превышает поток оптического излучения, хотя в оптическом диапазоне их светимость очень велика ~ в несколько раз превосходит полную светимость нашей Галактики. Напомним, что последняя складывается из излучения сотен миллиардов звезд, многие из которых в свою очередь излучают значительно сильнее Солнца. Классический пример такой радиогалактики - знаменитый объект Лебедь А. В оптическом диапазоне это два ничтожных световых пятнышка 17-й звездной величины (рис. 7). На самом деле их светимость очень велика, примерно в 10 раз больше, чем у нашей Галактики. Слабой эта система кажется потому, что она удалена от нас на огромное расстояние - 600 млн световых лет. Однако поток радиоизлучения от Лебедя А на метровых волнах настолько велик, что превышает даже поток радиоизлучения от Солнца (в периоды, когда на Солнце нет пятен). Но ведь Солнце очень близко - расстояние до него "всего лишь" 8 световых минут; 600 млн лет - и 8 мин! А ведь потоки излучения, как известно, обратно пропорциональны квадратам расстояний! Спектры большинства галактик напоминают солнечный; в обоих случаях наблюдаются отдельные темные линии поглощения на довольно ярком фоне. В этом нет ничего неожиданного, так как излучение галактик - это излучение миллиардов входящих в их состав звезд, более или менее похожих на Солнце. Внимательное изучение спектров галактик много лет назад позволило сделать одно открытие фундаментальной важности. Дело в том, что по характеру смещения длины волны какой-либо спектральной линии по отношению к лабораторному стандарту можно определить скорость движения излучающего источника по лучу зрения. Иными словами, можно установить, с какой скоростью источник приближается или удаляется.

    Рис. 7. Радиогалактика Лебедь А

    Если источник света приближается, спектральные линии смещаются в сторону более коротких волн, если удаляется - в сторону более длинных. Это явление называется "эффектом Доплера". Оказалось, что у галактик (за исключением немногих, самых близких к нам) спектральные линии всегда смещены в длинноволновую часть спектра ("красное смещение" линий), причем величина этого смещения тем больше, чем более удалена от нас галактика. Это означает, что все галактики удаляются от нас, причем скорость "разлета" по мере удаления галактик растет. Она достигает огромных значений. Так, например, найденная по красному смещению скорость удаления радиогалактики Лебедь А близка к 17 тыс. км/с. Еще двадцать пять лет назад рекорд принадлежал очень слабой (в оптических лучах 20-й величины) радиогалактике ЗС 295. В 1960 г. был получен ее спектр. Оказалось, что известная ультрафиолетовая спектральная линия, принадлежащая ионизованному кислороду, смещена в оранжевую область спектра! Отсюда легко найти, что скорость удаления этой удивительной звездной системы составляет 138 тыс. км/с, или почти половину скорости света! Радио галактика ЗС 295 удалена от нас на расстояние, которое свет проходит за 5 млрд лет. Таким образом, астрономы исследовали свет, который был излучен тогда, когда образовывались Солнце и планеты, а может быть, даже "немного" раньше... С тех пор открыты еще более удаленные объекты (гл. 6). Причины расширения системы, состоящей из огромного количества галактик, мы здесь касаться не будем. Этот сложный вопрос является предметом современной космологии. Однако сам факт расширения Вселенной имеет большое значение для анализа развития жизни в ней (гл. 7). На общее расширение системы галактик накладываются беспорядочные скорости отдельных галактик, обычно равные нескольким сотням километров в секунду. Именно поэтому ближайшие к нам галактики не обнаруживают систематического красного смещения. Ведь скорости беспорядочных (так называемых "пекулярных") движений для этих галактик больше регулярной скорости красного смещения. Последняя растет по мере удаления галактик приблизительно на 50 км/с, на каждый миллион парсек. Поэтому для галактик, расстояния до которых не превосходят нескольких миллионов парсек, беспорядочные скорости превышают скорость удаления, обусловленную красном смещением. Среди близких галактик наблюдаются и такие, которые приближаются к нам (например, туманность Андромеды М 31). Галактики не распределены в метагалактическом пространстве равномерно, т.е. с постоянной плотностью. Они обнаруживают ярко выраженную тенденцию образовывать отдельные группы или скопления. В частности, группа из примерно 20 близких к нам галактик (включая нашу Галактику) образует так называемую "местную систему". В свою очередь местная система входит в большое скопление галактик, центр которого находится в той части неба, на которую проектируется созвездие Девы. Это скопление насчитывает несколько тысяч членов и принадлежит к числу самых больших. На рис. 8 приведена фотография известного скопления галактик в созвездии Северной Короны, насчитывающего сотни галактик. В пространстве между скоплениями плотность галактик в десятки раз меньше, чем внутри скоплений.

    Рис. 8. Скопление галактик в созвездии Северной Короны

    Обращает на себя внимание разница между скоплениями звезд, образующими галактики, и скоплениями галактик. В первом случае расстояния между членами скопления огромны по сравнению с размерами звезд, в то время как средние расстояния между галактиками в скоплениях галактик всего лишь в несколько раз больше, чем размеры галактик. С другой стороны, число галактик в скоплениях не идет ни в какое сравнение с числом звезд в галактиках. Если рассматривать совокупность галактик как некоторый газ, где роль молекул - играют отдельные галактики, то мы должны считать эту среду чрезвычайно вязкой.

    Таблица 1

    Большой Взрыв

    Образование галактик (z~10)

    Образование Солнечной системы

    Образование Земли

    Возникновение жизни на Земле

    Образование древнейших скал на Земле

    Появление бактерий и сине-зеленых водорослей

    Возникновение фотосинтеза

    Первые клетки с ядром

    Воскресенье Понедельник Вторник Среда Четверг Пятница Суббота
    Возникновение кислородной атмосферы на Земле Мощная вулканическая деятельность на Марсе
    Первые черви Океанский планктон Трилобиты Ордовик Первые рыбы Силур Растения колонизируют сушу
    Девон Первые насекомые Животные колонизируют сушу Первые амфибии и крылатые насекомые Карбон Первые деревья Первые рептилии Пермь Первые динозавры Начало мезозоя Триас Первые млекопитающие Юра Первые птицы
    Мел Первые цветы Третич-ный период Первые приматы Первые гоминиды Чет-вертичный период Первые люди (~22:30)
    Как же выглядит Метагалактика в нашей модели, где земная орбита уменьшена до размеров первой орбиты атома Бора? В этом масштабе расстояние до туманности Андромеды будет несколько больше 6 м, расстояние до центральной части скопления галактик в Деве, куда входит и наша местная система галактик, будет порядка 120 м, причем такого же порядка будет размер самого скопления. Радиогалактика Лебедь А будет теперь удалена на расстояние - 2,5 км, а расстояние до радиогалактики ЗС 295 достигнет 25 км... Мы познакомились в самом общем виде с основными структурными особенностями и с масштабами Вселенной. Это как бы застывший кадр ее развития. Не всегда она была такой, какой мы теперь ее наблюдаем. Все во Вселенной меняется: появляются, развиваются и "умирают" звезды и туманности, развивается закономерным образом Галактика, меняются сама структура и масштабы Метагалактики (хотя бы по причине красного смещения). Поэтому нарисованную статическую картину Вселенной необходимо дополнить динамической картиной эволюции отдельных космических объектов, из которых она образована, и всей Вселенной как целого. Что касается эволюции отдельных звезд и туманностей, образующих галактики, то об этом речь будет в гл. 4 . Здесь мы только скажем, что звезды рождаются из межзвездной газопылевой среды, некоторое время (в зависимости от массы) спокойно излучают, после чего более или менее драматическим образом "умирают". Открытие в 1965 г. "реликтового" излучения (см. гл. 7) со всей наглядностью показало, что на самых ранних этапах эволюции Вселенная качественно отличалась от своего современного состояния. Главное - это то, что тогда не было ни звезд, ни галактик, ни тяжелых элементов. И, конечно, не было жизни. Мы наблюдаем грандиозный процесс эволюции Вселенной от простого к сложному. Такое же н а п р а в л е н и е эволюции имеет и развитие жизни на Земле. Во Вселенной скорость эволюции вначале была значительно выше, чем в современную эпоху. Похоже, однако, что в развитии жизни на Земле наблюдается обратная картина. Это наглядно видно из модели "космической хронологии", представленной в таблице 1, предложенной американским планетологом Саганом. Выше мы довольно подробно развили пространственную модель Вселенной, основывающуюся на выборе того или иного линейного масштаба. В сущности говоря, тот же метод используется в табл. 1. Все время существования Вселенной (которое для определенности принимается равным 15 миллиардам реальных "земных" годов, причем здесь возможна ошибка в несколько десятков процентов) моделируется некоторым воображаемым "космическим годом". Нетрудно убедиться, что одна секунда "космического" года равна 500 вполне реальным годам. При таком масштабе каждой эпохе развития Вселенной ставится в соответствие определенная дата (и время "суток") "космического" года. Легко видеть, что эта таблица в своей основной части сугубо "антропоцентрична": даты и моменты космического календаря после "сентября" и, особенно, всего специально выделенного "декабря", отражают определенные этапы развития жизни на Земле. Этот календарь совершенно иначе выглядел бы для обитателей какой-нибудь планеты, обращающейся вокруг "своей" звезды в какой-нибудь удаленной галактике. Тем не менее, само сопоставление темпа космической и земной эволюции в высшей степени впечатляюще.
    • * Астрономическая единица - среднее расстояние от Земли до Солнца, равное 149600 тыс. км.
    • ** Пожалуй, только скорости звезд и планет в астрономии выражаются в единицах "километр в секунду".
    • *** В самом центре галактического ядра в области поперечником в 1 пк находится, по-видимому, несколько миллионов звезд.
    • **** Полезно запомнить простое правило: скорость в 1 пк за 1 млн лет почти равна скорости в 1 км/с. Предоставляем читателю убедиться в этом.
    • ***** Поток излучения от звезд измеряется так называемыми "звездными величинами". По определению, поток от звезды (i+1)-й величины в 2,512 раза меньше, чем от звезды i-й величины. Звезды слабее 6-й величины невооруженным глазом не видны. Самые яркие звезды имеют отрицательную звездную величину (например, у Сириуса она равна -1,5).

    Описание презентации по отдельным слайдам:

    1 слайд

    Описание слайда:

    2 слайд

    Описание слайда:

    Астрономия – это наука о небесных телах (от древнегреческих слов астон – звезда и номос – закон) Она изучает видимые и действительные движения и законы, определяющие эти движения, форму, размер, массу и рельеф Поверхности, природу и физическое состояние небесных тел, взаимодействие и их эволюцию.

    3 слайд

    Описание слайда:

    Изучение вселенной Число звезд в галактике исчисляется в триллионах. Самые многочисленные звезды – это карлики с массами примерно в 10 раз меньше Солнца. Кроме одиночных звезд и их спутников (планет), в состав Галактики входят двойные и кратные звезды, а также группы звезд, связанные силой тяготения и движущиеся в пространстве как единое целое, называемое звездными скоплениями. Некоторые из них можно отыскать на небе в телескоп, а иногда и не вооруженным глазом. Такие скопления не имеют правильной формы; их в настоящее время известно более тысячи. Звездные скопления делятся на рассеянные и шаровые. В отличие от рассеивающих звездных скоплений, состоящих в основном из звезд, которые принадлежат главной последовательности, шаровые скопления содержат красные и желтые гиганты и сверхгиганты. Обзоры неба, выполненные рентгентовскими телескопами, установленными на специальных искусственных спутниках Земли, привели к открытию рентгентовского излучения многих шаровых скоплений.

    4 слайд

    Описание слайда:

    Строение галактики Подавляющая часть звезд и диффузной материи Галактики занимает линзообразный объем. Солнце находится на расстоянии около 10.000 Пк от центра Галактики, скрытого от нас облаками межзвездной пыли. В центре Галактики расположено ядро, которое в последнее время тщательно исследуется в инфракрасном, радио- и рентгеновском диапазонах волн. Непрозрачные облака пыли застилают от нас ядро, препятствуя визуальным и обычным фотографическим наблюдениям этого интереснейшего объекта Галактики. Если бы мы могли взглянуть на галактический диск «сверху», то обнаружили бы огромные спиральные ветви, в основном содержащие наиболее горячие и яркие звезды, а также массивные газовые облака. Диск со спиральными ветвями образует основу плоской подсистемы Галактики. А объекты, концентрирующиеся к ядру Галактики и лишь частично проникающие в диск, относятся к сферической подсистеме. Это и есть упрощенная форма строения Галактики.

    5 слайд

    Описание слайда:

    Типы галактик 1 Спиральные. Это 30% галактик. Они бывают двух видов. Нормальные и пересеченные. 2 Эллиптические. Считается, что большинство галактик имеет форму сплющенной сферы. Среди них есть шаровые и почти плоские. Самая большая из известных эллиптических- галактика М87 в созвездии Девы. 3 Не правильные. Многие галактики имеют клочковатую форму без ярко выраженного контура. К ним относится Магеланово Облако Нашей Местной группы.

    6 слайд

    Описание слайда:

    Солнце Солнце - это центр нашей планетной системы, основной ее элемент, без которого не было бы ни Земли, ни жизни на ней. Наблюдением за звездой люди занимаются с древних времен. С тех пор наши знания о светиле значительно расширились, обогатились многочисленными сведениями о движении, внутренней структуре и природе этого космического объекта. Более того, изучение Солнца вносит огромный вклад в понимание устройства Вселенной в целом, особенно тех ее элементов, которые аналогичны по своей сути и принципам «работы».

    7 слайд

    Описание слайда:

    Солнце Солнце - это объект, существующий, по человеческим меркам, очень давно. Его формирование началось примерно 5 миллиардов лет назад. Тогда на месте Солнечной системы находилось обширное молекулярное облако. Под воздействием сил гравитации в нем начали возникать завихрения, подобные земным смерчам. В центре одного из них вещество (в основном это был водород) начало уплотняться, и 4,5 млрд лет назад тут появилась молодая звезда, которая спустя еще продолжительный период времени получила имя Солнце. Вокруг него постепенно стали формироваться планеты - наш уголок Вселенной начал приобретать привычный для современного человека вид. -

    8 слайд

    Описание слайда:

    Жёлтый карлик Солнце - это не уникальный объект. Его относят к классу желтых карликов, сравнительно небольших звезд главной последовательности. Срок «службы», отпущенный таким телам, составляет примерно 10 миллиардов лет. По меркам космоса, это совсем немного. Сейчас наше светило, можно сказать, в самом расцвете сил: еще не старое, уже не молодое - впереди еще полжизни.

    9 слайд

    Описание слайда:

    10 слайд

    Описание слайда:

    Световой год Световой год – это то расстояние, которое проходит свет за один год. Международный астрономический союз дал свое объяснение световому году – это то расстояние, которое проходит свет в вакууме, без участия гравитации, за юлианский год. Юлианский год равен 365 суткам. Именно эта расшифровка используется в научной литературе. Если брать профессиональную литературу, то тут расстояние рассчитывается в парсеках или кило- и мегапарсеках. До 1984 года световым годом считалось расстояние, которое проходит свет за один тропический год. Новое определение отличается от старого всего лишь на 0,002%. Особого различия между определениями нет. Имеются конкретные цифры, которые определили расстояние световых часов, минут, дней и т.д. Световой год равен 9 460 800 000 000 км, месяц - 788 333 млн. км., неделя - 197 083 млн. км., сутки - 26 277 млн. км, час - 1 094 млн. км., минута - около 18 млн. км., секунда - около 300 тыс. км.

    11 слайд

    Описание слайда:

    Галактика Созвездие Девы Лучше всего Деву можно рассмотреть в начале весны, а именно в марте - апреле, когда оно переходит в южную часть горизонта. Благодаря тому, что созвездие имеет внушительные размеры, Солнце в нем находится больше месяца – начиная с 16 сентября и вплоть до 30 октября. На старинных звездных атласах Деву представляли, как девушку с колоском пшеницы в правой руке. Однако не каждый способен разглядеть в хаотичной россыпи звезд именно такой образ. Тем не менее, найти созвездие Девы на небе не так уж сложно. В ее составе есть звезда первой величины, благодаря яркому свету которой Деву можно легко разыскать среди прочих созвездий.

    12 слайд

    Описание слайда:

    Туманность Андромеды Ближайшая к Млечному Пути большая галактика. Содержит примерно 1 триллион звёзд, что в 2,5-5 раз больше Млечного Пути. Расположена в созвездии Андромеды и отдалена от Земли на расстояние 2,52 млн св. лет. Плоскость галактики наклонена к лучу зрения под углом 15°, её видимый размер - 3,2 × 1,0°, видимая звёздная величина - +3,4m.

    13 слайд

    Описание слайда:

    Млечный путь Млечный Путь относится к галактикам спирального типа. При этом он имеет перемычку в виде огромной звездной системы, связанной между собой гравитационными силами. Считается, что Млечный Путь существует уже более тринадцати миллиардов лет. Это период, в течение которого в данной Галактике образовалось порядка 400 млрд созвездий и звезд, свыше тысячи огромных по своим размерам газовых туманностей, скоплений и облаков. Форма Млечного Пути хорошо видна на карте Вселенной. При ее рассмотрении становится понятно, что это скопление звезд представляет собой диск, диаметр которого равен 100 тыс. световых лет (один такой световой год составляет десять триллионов километров). Толщина звездного скопления - 15 тыс., а глубина - около 8 тыс. световых лет. Сколько весит Млечный Путь? Это (определение его массы - весьма сложная задача) подсчитать не представляется возможным. Сложности вызывает определение массы темной материи, которая не вступает во взаимодействие с электромагнитным излучением. Вот почему астрономы окончательно не могут ответить на данный вопрос. Но существуют грубые подсчеты, согласно которым, вес Галактики находится в пределах от 500 до 3000 млрд масс Солнца

    Что мы знаем о мироздании, каков космос? Вселенная – это трудно постижимый человеческим разумом безграничный мир, который кажется нереальным и нематериальным. На самом деле нас окружает материя, безграничная в пространстве и во времени, способная принимать различные формы. Чтобы попытаться понять истинные масштабы космического пространства, как устроена Вселенная, строение мироздания и процессы эволюции, нам потребуется переступить порог собственного мироощущения, взглянуть на окружающий нас мир под другим ракурсом, изнутри.

    Взгляд на бескрайние просторы космоса с Земли

    Образование Вселенной: первые шаги

    Космос, который мы наблюдаем в телескопы, является только частью звездной Вселенной, так называемой Мегагалактикой. Параметры космологического горизонта Хаббла колоссальные – 15-20 млрд. световых лет. Эти данные приблизительны, так как в процессе эволюции Вселенная постоянно расширяется. Расширение Вселенной происходит путем распространения химических элементов и реликтового излучения. Структура Вселенной постоянно меняется. В пространстве возникают скопления галактик, объекты и тела Вселенной — это миллиарды звезд, формирующие элементы ближнего космоса — звездные системы с планетами и со спутниками.

    А где начало? Как появилась Вселенная? Предположительно возраст Вселенной составляет 20 млрд. лет. Возможно, источником космической материи стало горячее и плотное протовещество, скопление которого в определенный момент взорвалось. Образовавшиеся в результате взрыва мельчайшие частицы разлетелись во все стороны, и продолжают удаляться от эпицентра в наше время. Теория Большого взрыва, которая сейчас доминирует в научных кругах, наиболее точно подходит под описания процесса образования Вселенной. Возникшее в результате космического катаклизма вещество представляло собой разнородную массу, состоящую из мельчайших неустойчивых частиц, которые сталкиваясь и разлетаясь, стали взаимодействовать друг с другом.

    Большой взрыв – теория возникновения Вселенной, объясняющая ее образование. Согласно этой теории изначально существовало некоторое количество вещества, которое в результате определенных процессов взорвалось с колоссальной силой, разбросав в окружающее пространство массу матери.

    Спустя некоторое время, по космическим меркам — мгновение, по земному летоисчислению — миллионы лет, наступил этап материализации пространства. Из чего состоит Вселенная? Рассеянное вещество стало концентрироваться в сгустки, большие и малые, на месте которых впоследствии стали возникать первые элементы Вселенной, огромные газовые массивы — ясли будущих звезд. В большинстве случаев процесс формирования материальных объектов во Вселенной объясняется законами физики и термодинамики, однако существует ряд моментов, которые пока не поддаются объяснению. К примеру, почему в одной части пространства расширяющееся вещество концентрируется больше, тогда как в другой части мироздания материя сильно разрежена. Ответы на эти вопросы можно будет получить только тогда, когда станет понятен механизм образования космических объектов, больших и малых.

    Сейчас же процесс образования Вселенной объясняется действием законов Вселенной. Гравитационная нестабильность и энергия в разных участках запустили процессы формирования протозвезд, которые в свою очередь под воздействием центробежных сил и гравитации образовали галактики. Другими словами, в то время как материя продолжала и продолжает расширяться, под воздействием сил тяготения начались процессы сжатия. Частицы газовых облаков стали концентрироваться вокруг мнимого центра, образуя в итоге новое уплотнение. Строительным материалом в этой гигантской стройке является молекулярный водород и гелий.

    Химические элементы Вселенной — первичный строительный материал, из которого шло впоследствии формирование объектов Вселенной

    Дальше начинает действовать закон термодинамики, приводятся в действие процессы распада и ионизации. Молекулы водорода и гелия распадаются на атомы, из которых под действием сил гравитации формируется ядро протозвезды. Эти процессы являются законами Вселенной и приняли форму цепной реакции, происходят во всех далеких уголках Вселенной, заполнив мироздание миллиардами, сотнями миллиардов звезд.

    Эволюция Вселенной: основные моменты

    На сегодняшний день в научных кругах бытует гипотеза о цикличности состояний, из которых соткана история Вселенной. Возникнув в результате взрыва протовещества скопления газа, стали яслями для звезд, которые в свою очередь сформировали многочисленные галактики. Однако достигнув определенной фазы, материя во Вселенной начинает стремиться к своему изначальному, концентрированному состоянию, т.е. за взрывом и последующим расширением вещества в пространстве следует сжатие и возврат к сверхплотному состоянию, к исходной точке. Впоследствии все повторяется, за рождением следует финал и так на протяжении многих миллиардов лет, до бесконечности.

    Начало и конец мироздания в соответствии с цикличностью эволюции Вселенной

    Однако опустив тему образования Вселенной, которая остается открытым вопросом, следует перейти к строению мироздания. Еще в 30-е годы XX века стало ясно, что космическое пространство поделено на районы – галактики, которые являются огромными образованиями, каждое со своим звездным населением. При этом галактики не являются статическими объектами. Скорость разлета галактик от мнимого центра Вселенной постоянно меняется, о чем свидетельствует сближение одних и удаление других друг от друга.

    Все перечисленные процессы с точки зрения продолжительности земной жизни длятся очень медленно. С точки зрения науки и этих гипотез — все эволюционные процессы происходят стремительно. Условно эволюцию Вселенной можно разделить на четыре этапа – эры:

    • адронная эра;
    • лептонная эра;
    • фотонная эра;
    • звездная эра.

    Космическая шкала времени и эволюции Вселенной, в соответствии с которой можно объяснить появление космических объектов

    На первом этапе все вещество было сконцентрировано в одной большой ядерной капле, состоящей из частиц и античастиц, объединенных в группы – адроны (протоны и нейтроны). Соотношение частиц и античастиц составляет примерно 1:1,1. Далее наступает процесс аннигиляции частиц и античастиц. Оставшиеся протоны и нейтроны являются тем строительным материалом, из которого формируется Вселенная. Продолжительность адронной эры ничтожна, всего 0,0001 секунды — период взрывной реакции.

    Далее, спустя 100 секунд, начинается процесс синтеза элементов. При температуре миллиард градусов в процессе ядерного синтеза образуются молекулы водорода и гелия. Все это время вещество продолжает расширяться в пространстве.

    С этого момента начинается длительный, от 300 тыс. до 700 тыс. лет, этап рекомбинации ядер и электронов, формирующих атомы водорода и гелия. При этом наблюдается снижение температуры вещества, падает интенсивность излучения. Вселенная становится прозрачной. Образовавшийся в колоссальных количествах водород и гелий под действием сил гравитации превращает первичную Вселенную в гигантскую строительную площадку. Через миллионы лет начинается звездная эра – представляющая собой процесс образования протозвезд и первых протогалактик.

    Такое деление эволюции на этапы вписывается в модель горячей Вселенной, которая объясняет многие процессы. Истинные причины Большого взрыва, механизм расширения материи остаются необъяснимыми.

    Строение и структура Вселенной

    С образования водородного газа начинается звездная эра эволюции Вселенной. Водород под действием гравитации скапливается в огромные скопления, сгустки. Масса и плотность таких скоплений колоссальны, в сотни тысяч раз превышают массу самой сформировавшейся галактики. Неравномерное распределение водорода, наблюдавшееся на начальной стадии формирования мироздания, объясняет различия в размерах образовавшихся галактик. Там, где должно было существовать максимальное скопление водородного газа, образовались мегагалактики. Где концентрация водорода была незначительной, появились галактики меньших размеров, подобные нашему звездному дому — Млечному Пути.

    Версия, в соответствии с которой Вселенная представляет собой точку начала-конца, вокруг которой вращаются галактики на разных этапах развития

    С этого момента Вселенная получает первые образования с четкими границами и физическими параметрами. Это уже не туманности, скопления звездного газа и космической пыли (продукты взрыва), протоскопления звездной материи. Это звездные страны, площадь которых огромна с точки зрения человеческого разума. Вселенная становится полна интересных космических феноменов.

    С точки зрения научных обоснований и современной модели Вселенной, сначала формировались галактики в результате действия гравитационных сил. Происходило превращение материи в колоссальный вселенский водоворот. Центростремительные процессы обеспечили последующую фрагментацию газовых облаков в скопления, которые стали местом рождения первых звезд. Протогалактики с быстрым периодом вращения превратились со временем в спиральные галактики. Там, где вращение было медленным, и в основном наблюдался процесс сжатия вещества, образовались неправильные галактик, чаще эллиптические. На этом фоне во Вселенной происходили более грандиозные процессы — формирование сверхскоплений галактик, которые тесно соприкасаются своими краями друг с другом.

    Сверхскопления — это многочисленные группы галактик и скоплений галактик в составе крупномасштабной структуры Вселенной. В пределах 1 млрд св. лет находится около 100 сверхскоплений

    С этого момента стало ясно, что Вселенная представляет собой огромную карту, где континентами являются скопления галактик, а странами — мегагалактики и галактики, образовавшиеся миллиарды лет назад. Каждое из образований состоит из скопления звезд, туманностей, скоплений межзвездного газа и пыли. Однако все это население составляет лишь 1% от общего объема вселенских образований. Основную массу и объем галактик занимает темная материя, природу которой выяснить не представляется возможным.

    Разнообразие Вселенной: классы галактик

    Стараниями американского ученого астрофизика Эдвина Хаббла мы теперь имеем границы Вселенной и четкую классификацию галактик, населяющих ее. В основу классификации легли особенности структуры этих гигантских образований. Почему галактики имеют разную форму? Ответ на этот и многие другие вопросы дает классификация Хаббла, в соответствии с которой Вселенная состоит из галактик следующих классов:

    • спиральные;
    • эллиптические;
    • иррегулярные галактики.

    К первым относятся наиболее распространенные образования, которыми заполнено мироздание. Характерными чертами спиральных галактик является наличие четко выраженной спирали, которая вращается вокруг яркого ядра либо стремится к галактической перемычке. Спиральные галактики с ядром обозначаются символами S, тогда как у объектов с центральной перемычкой обозначение уже SB. К этому классу относится и наша галактика Млечный Путь , в центре которой ядро разделено светящейся перемычкой.

    Типичная спиральная галактика. В центре отчетливо видны ядро с перемычкой от концов которой исходят спиральные рукава.

    Подобные образования разбросаны по Вселенной. Ближайшая к нам спиральная галактика Андромеда — гигант, который стремительно сближается с Млечным Путем. Наибольшей из известных нам представительниц этого класса является гигантская галактика NGC 6872. Диаметр галактического диска этого монстра составляет примерно 522 тысячи световых лет. Находится этот объект на расстоянии от нашей галактики в 212 млн. световых лет.

    Следующим, распространенным классом галактических образований являются эллиптические галактики. Их обозначение в соответствии с классификацией Хаббла буква Е (elliptical). По форме эти образования эллипсоиды. Несмотря на то, что подобных объектов во Вселенной достаточно много, эллиптические галактики не отличатся выразительностью. Состоят они в основном из гладких эллипсов, которые наполнены звездными скоплениями. В отличие от галактических спиралей, эллипсы не содержат скоплений межзвездного газа и космической пыли, которые являются основными оптическими эффектами визуализации подобных объектов.

    Типичный представитель этого класса, известный на сегодняшний день — эллиптическая кольцевая туманность в созвездии Лиры. Этот объект расположен от Земли на расстоянии 2100 световых лет.

    Вид эллиптической галактики Центавр А в телескоп CFHT

    Последний класс галактических объектов, которыми населена Вселенная — иррегулярные или неправильные галактики. Обозначение по классификации Хаббла – латинский символ I. Основная черта – это неправильная форма. Другими словами у подобных объектов нет четких симметричных форм и характерного рисунка. По своей форме такая галактика напоминает картину вселенского хаоса, где звездные скопления чередуются с облаками газа и космической пыли. В масштабах Вселенной иррегулярные галактики — явление частое.

    В свою очередь неправильные галактики делятся на два подтипа:

    • иррегулярные галактики I подтипа имеют сложную неправильной формы структуру, высокую плотную поверхность, отличающуюся яркостью. Нередко такая хаотическая форма неправильных галактик является следствием разрушившихся спиралей. Типичный пример подобной галактики — Большое и Малое Магелланово Облако;
    • иррегулярные, неправильные галактики II подтипа имеют низкую поверхность, хаотическую форму и не отличаются высокой яркостью. Вследствие снижения яркости, подобные образования трудно обнаружить на просторах Вселенной.

    Большое Магелланово Облако является самой ближайшей к нам неправильной галактикой. Оба образования в свою очередь являются спутниками Млечного Пути и могут быть в скором времени(через 1-2 млрд. лет) поглощены более крупным объектом.

    Неправильная галактика Большое Магелланово облако — спутник нашей галактики Млечный Путь

    Несмотря на то, что Эдвин Хаббл достаточно точно расставил галактики по классам, данная классификация не является идеальной. Больше результатов мы могли бы достичь, включи в процесс познания Вселенной теорию относительности Эйнштейна. Вселенная представлена богатством разнообразных форм и структур, каждая из которых имеет свои характерные свойства и особенности. Недавно астрономы сумели обнаружить новые галактические образования, которые по описанию являются промежуточными объектами, между спиральными и эллиптическими галактиками.

    Млечный Путь — самая известная нам часть Вселенной

    Две спиральные ветви, симметрично расположенные вокруг центра, составляют основное тело галактики. Спирали в свою очередь состоят из рукавов, которые плавно перетекают друг в друга. На стыке рукавов Стрельца и Лебедя расположилось наше Солнце, находящееся от центра галактики Млечный Путь на расстоянии 2,62·10¹⁷км. Спирали и рукава спиральных галактик – это скопления звезд, плотность которых увеличивается по мере приближения к галактическому центру. Остальную массу и объем галактических спиралей составляет темная материя, и только малая часть приходится на межзвездный газ и космическую пыль.

    Положение Солнца в рукавах Млечного Пути, место нашей галактики во Вселенной

    Толщина спиралей составляет примерно 2 тыс. световых лет. Весь это слоеный пирог находится в постоянном движении, вращаясь с огромной скоростью 200-300 км/с. Чем ближе к центру галактики, тем выше скорость вращения. Солнцу и нашей Солнечной системе потребуется 250 млн. лет, чтобы совершить полный оборот вокруг центра Млечного Пути.

    Наша галактика состоит из триллиона звезд, больших и малых, сверхтяжелых и средней величины. Самое плотное скопление звезд Млечного Пути — рукав Стрельца. Именно в этой области наблюдается максимальная яркость нашей галактики. Противоположная часть галактического круга наоборот, менее яркая и плохо различима при визуальном наблюдении.

    Центральная часть Млечного Пути представлена ядром, размеры которого предположительно составляют 1000-2000 парсек. В этой самой яркой области галактики сосредоточено максимальное количество звезд, которые имеют различные классы, свои пути развития и эволюции. В основном это старые сверхтяжелые звезды, находящиеся на финальной стадии Главной последовательности. Подтверждением наличия стареющего центра галактики Млечный Путь является наличие в этой области большого числа нейтронных звезд и черные дыры. Действительно – центр спирального диска любой спиральной галактики — сверхмассивная черная дыра, которая словно гигантский пылесос всасывает в себя небесные объекты и реальную материю.

    Сверхмассивная черная дыра, находящаяся в центральной части Млечного Пути – место гибели всех галактических объектов

    Что касается звездных скоплений, то ученым сегодня удалось классифицировать два вида скоплений: шарообразные и рассеянные. Помимо звездных скоплений спирали и рукава Млечного Пути, как и любой другой спиральной галактики, состоят из рассеянной материи и темной энергии. Являясь последствием Большого взрыва, материя пребывает в сильно разреженном состоянии, которое представлено разреженным межзвездным газом и частицами пыли. Видимая часть материи представляет собой туманности, которые в свою очередь делятся на два типа: планетарные и диффузные туманности. Видимая часть спектра туманностей объясняется преломлением света звезд, которые излучают свет внутри спирали по всем направлениями.

    В этом космическом супе и существует наша Солнечная система. Нет, мы не единственные в этом огромном мире. Как и у Солнца , многие звезды имеют свои планетарные системы. Весь вопрос в том, как обнаружить далекие планеты, если расстояния даже в пределах нашей галактики превышают продолжительность существования любой разумной цивилизации. Время во Вселенной измеряется другими критериями. Планеты со своими спутниками, самые мелкие объекты во Вселенной. Количество подобных объектов не поддается исчислению. Каждая из тех звезд, которые находятся в видимом диапазоне, могут иметь собственные звездные системы. В наших силах увидеть только самые ближайшие к нам существующие планеты. Что происходит по соседству, какие миры существуют в других рукавах Млечного Пути и какие планеты существуют в других галактиках, остается загадкой.

    Kepler-16 b - экзопланета у двойной звезды Kepler-16 в созвездии Лебедь

    Заключение

    Имея только поверхностное представление о том, как появилась и как эволюционирует Вселенная, человек сделал лишь маленький шаг на пути постижения и осмысливания масштабов мироздания. Грандиозные размеры и масштабы, с которыми ученым приходится сегодня иметь дело, говорят о том, что человеческая цивилизация — лишь мгновение в этом пучке материи, пространства и времени.

    Модель Вселенной в соответствии с понятием присутствия материи в пространстве с учетом времени

    Изучение Вселенной идет от Коперника и до наших дней. Сначала ученые отталкивались от гелиоцентрической модели. На деле оказалось, что космос не имеет реального центра и все вращение, движение и перемещение происходит по законам Вселенной. Несмотря на то, что существует научное объяснение происходящим процессам, вселенские объекты распределены на классы, виды и типы, ни одно тело в космосе не похоже на другое. Размеры небесных тел примерны, так же как и их масса. Расположение галактик, звезд и планет условно. Все дело в том, что во Вселенной нет системы координат. Наблюдая за космосом, мы делаем проекцию на весь видимый горизонт, считая нашу Землю нулевой точкой отсчета. На самом деле мы только микроскопическая частичка, затерявшаяся в бесконечных просторах Вселенной.

    Вселенная – это субстанция, в которой все объекты существуют в тесной привязке к пространству и времени

    Аналогично привязки к размерам, следует рассматривать время во Вселенной, как главную составляющую. Зарождение и возраст космических объектов позволяет составить картину рождения мира, выделить этапы эволюции мироздания. Система, с которой мы имеем дело, тесно связана временными рамками. Все процессы, протекающие в космосе, имеют циклы — начало, формирование, трансформацию и финал, сопровождающийся гибелью материального объекта и перехода материи в другое состояние.